

5025

Extended Specification

V2.5b

Time Electronics, Botany Industrial Estate, Tonbridge, Kent, TN9 1RH England Tel: 44 (0) 1732 355993 Fax: 44 (0) 1732 770312. E-mail: mail@timeelectronics.co.uk www.timeelectronics.com

SPECIFICATIONS DETAILS

- 1. Accuracies are shown as ppm or % of output + floor.
- 2. Specifications apply for settings between 10% and 100% of range.
- 3. Specifications apply at ambient temp of 22°C +/- 3°C
- 4. For temperatures outside the above range apply 0.2 x specification per °C
- 5. Calibrator warm up time at least 1 hour.
- 6. All values are relative to calibration standards.
- 7. Accuracies quoted are for 1 year.

Due to continuous development Time Electronics reserves the right to change specifications without prior notice.

DC VOLTAGE				
Range	Accuracy ppm	Output Resistance	Max Output Current	Resolution
20mV 1	100 + 4uV	10 Ω ³	-	100nV
200mV 1	30 + 6uV	10 Ω ³	-	1uV
2V 1	15 + 20uV	< 0.1 Ω	20mA	1uV
20V 1	15 + 150uV	< 0.1 Ω	20mA	10uV
200V 1	30 + 6mV	< 5 Ω	20mA	1mV
1050V	50 + 30mV	< 10 Ω	10mA	1mV

AC VOLTAGE (sine-wave).			(*	9771 AC Hi Frequend	cy Option Required)
Range RMS	Frequency ²	Accuracy %	Output Resistance	Max Output Current	Resolution
20mV ¹	10Hz-45Hz	0.05 + 250uV	10 Ω ³		1uV
	45Hz-1kHz	0.05 + 100uV	10 Ω ³		
	1kHz-10kHz	0.05 + 150uV	10 Ω ³		
	10kHz-20kHz	0.05 + 250uV	10 Ω ³		
*	20kHz-100kHz	0.05% + 0.1mV	50 Ω		
*	100kHz-300kHz	0.1% + 0.5mV	50 Ω		
200mV ¹	10Hz-45Hz	0.05 + 250uV	10 Ω ³		1uV
	45Hz-1kHz	0.04 + 100uV	10 Ω ³		
	1kHz-10kHz	0.04 + 150uV	10 Ω ³		
	10kHz-20kHz	0.05 + 250uV	10 Ω ³		
*	20kHz-100kHz	0.1% + 0.5mV	50 Ω		
*	100kHz-300kHz	0.1% + 1mV	50 Ω		
2V 1	10Hz-45Hz	0.08 + 500uV	< 0.1 Ω	20mA	10uV
	45Hz-1kHz	0.03 + 170uV	< 0.1 Ω		
	1kHz-10kHz	0.03 + 250uV	< 0.1 Ω		
	10kHz-20kHz	0.08 + 500uV	< 0.1 Ω		
*	20kHz-100kHz	0.05% + 1mV	< 0.5 Ω		
*	100kHz-300kHz	0.1% + 5mV	< 0.5 Ω		
*	300kHz-1MHz	1% + 10mV	< 0.5 Ω		
20V ¹	10Hz-45Hz	0.08 + 4mV	< 5 Ω	20mA	100uV
	45Hz-1kHz	0.03 + 2mV	< 5 Ω		
	1kHz-10kHz	0.03 + 3mV	< 5 Ω		
	10kHz-20kHz	0.08 + 4mV	< 5 Ω		
*	20kHz-100kHz	0.15% + 15mV			
200V ¹	40Hz-1kHz	0.06 + 20mV	< 5Ω	20mA	1mV
1050V	40Hz-1kHz	0.08 + 90mV	< 10 Ω	10mA	10mV

^{1.} Over-Range 10%

^{2.} The frequency accuracy for standard AC ranges is 0.01% and is crystal controlled. The setting resolution is 1Hz.

^{3.} The output resistance on the 20mV and 200mV ranges is 10 ohms. This must be taken into account when loads of 100K ohms or less are being driven. A 100K load will result in a 0.01% error.

All AC outputs exclude the DC component.

It is recommended that for very high accuracy low level AC calibration a precision attenuator with known characteristics is used. This can be driven from the 5025's 2V or 20V ranges and with proper screening of the attenuator the signal to noise ratio of the resulting output can be improved significantly. A 1000:1 screened precision attenuator is available from Time Electronics.

DC CURREN	C CURRENT			
Range	Accuracy ppm	Compliance Voltage	Resolution	
200uA 1	150 + 15nA	11V	1 nA	
2mA 1	100 + 40nA	11V	10 nA	
20mA 1	80 + 200nA	11V	10 nA	
200mA ¹	80 + 3uA	11V	100 nA	
2A 1	250 + 40uA	5V	1 uA	
20A ¹	600 + 2mA	4V	10 uA	

^{1.} Over-Range 10%.

AC CURRENT (sine-wave)				
Range	Frequency	Accuracy %	Compliance Voltage rms	Resolution
200uA 1	20Hz – 1kHz	0.07 + 300nA	8V	10nA
2mA ¹	20Hz – 1kHz	0.05 + 300nA	8V	10nA
20mA 1	20Hz – 1kHz	0.05 + 3uA	8V	100nA
200mA 1	20Hz – 1kHz	0.05 + 30uA	8V	1uA
2A 1	20Hz – 500Hz	0.1 + 0.5mA	3.5V	10uA
20A 1	20Hz – 500Hz	0.2 + 5mA	3V	100uA

^{1.} Over-Range 10%.

THERMOCOUPLE SIMULATION		
Thermocouple Type	Temperature Range ⁰C	Accuracy °C
J	-210 to -50 -50 to 1200	0.3 0.18
К	-200 to -150 -150 to 1250	0.3 0.2
Т	-200 to -150 -150 to 0 0 to 400	0.4 0.3 0.2
R	-50 to 50 50 to 250 250 to 1750	1.5 0.8 0.6
S	-50 to 300 300 to 1750	1.5 0.8
В	100 to 800 800 to 1800	1.8 0.8
N	-200 to -100 -100 to 500 500 to 1300	0.8 0.3 0.2
E	-200 to -100 -100 to 0 0 to 1000	0.5 0.2 0.15

Cold Junction Compensation +/- 0.5°C (applies to ambient changes of +/- 1°C)

The accuracy of the thermocouple simulation is determined by the accuracy of the 5025's DC Voltage function and the accuracy of the standard thermocouple tables (BS EN 60584-1) published by the British Standards Institute.

The 5025 uses precise digital interpretation of the tables to output voltage levels that are within the accuracies specified in the table above.

DECADE RESISTANCE 1		
Value	Accuracy	Max Rating
1 Ω	800 ppm	0.1W
10 Ω	70 ppm	0.1W
100 Ω	30 ppm	0.1W
1K Ω	20 ppm	0.1W
10K Ω	20 ppm	0.1W
100k Ω	30 ppm	0.1W
1M Ω	150 ppm	200V
10M Ω	0.1%	200V
100M Ω	1%	200V
1G Ω	10%	200V

^{1.} Resistance specifications are \pm - 5m Ω .

ONDUCTANCE		
Value	Accuracy	Max Rating
1 S	800 ppm	0.1W
100m S	70 ppm	0.1W
10m S	30 ppm	0.1W
1m S	20 ppm	0.1W
100u S	20 ppm	0.1W
10u S	30 ppm	0.1W
1u S	150 ppm	200V
100n S	0.1%	200V
10n S	1%	200V
1n S	10%	200V

^{1.} Conductance specifications are +/- 5mΩ

10MHz DIGITAL FREQUENCY

Variable Values 0.1Hz to 10MHz, ~2V pk-pk square wave. Accuracy 20ppm

PERIOD

Fixed Values (1, 2, 5 steps) 100nS to 10S, ~2V pk-pk square wave. Accuracy 20ppm

OPTIONS

CAPACITANCE 1			
Value	Frequency	Accuracy %	Max volts
1 nF	1kHz	0.5 +/-10pf	
10 nF	1kHz	0.5 +/-10pf	
100 nF	1kHz	0.5	100V
1 uF	1kHz	0.25	100 V
10 uF	1kHz	0.5	
100 uF	100Hz	0.5	
. 55 41	. 551.12	3.0	

^{1.} After Subtraction of residual capacitance.

INDUCTANCE 1 2			
Value	Frequency	Accuracy	Max current
1 mH 1.9 mH 5 mH 10 mH 19 mH 50 mH 190 mH 190 mH 500 mH	1kHz 1kHz 1kHz 1kHz 1kHz 1kHz 1kHz 1kHz	1% of nominal OR 0.1% of previous calibration value	10mA
10H	100Hz		

^{1.} After Subtraction of residual inductance.

^{2.} Specification based on 4 wire sinewave measurement technique.

OSCILLOSCOPE 100MHz		
FREQUENCY	PERIOD	
0.1Hz to 10MHz accuracy 0.1ppm*	100nS to 10S accuracy 0.1ppm*	
20, 50, 100MHz accuracy 20ppm	50, 20, & 10nS accuracy 20ppm	

Fixed outputs in 1, 2, 5 steps. Deviation function is not available.

DUTY CYCLE

3 frequencies, 100Hz, 1kHz, 10kHz. Duty cycle settable from 0 to 100% Setting resolution 0.01% at 100Hz, 0.1% at 1 kHz, 1% at 10 kHz Deviation function is not available.

ı	OSCILLOSCOPE	VMDI ITIIDE	41.11
	USCH I USCOPE	AIVIELLIULE	TKHZ SOHATE-WAVE

GOOILLOGGOI L'AMIT LITODE	TKI 12 Square-wave	
Range	Range Accuracy	
200mV	0.2%	
200mV 50Ω	0.25%	
2V 50Ω	0.25%	
20V	0.05%	
200V	0.05%	
OSCILLOSCOPE FAST RISE	< 300ps. Bandwidth Checking up to 600 MHz	

2.2GHz-LEVELLED SWEEP¹ 0.5V, 1V, 1.5V pk-pk Sine-Wave, 50Ω Output.		
Range	Amplitude Accuracy	
100 MHz to 200 MHz	1%	
200 MHz to 500 MHz	4%	
500 MHz to 1 GHz	10%	
2.2 GHz to 2.2 GHz	20%	

^{1.} Max frequency at 1.5V is 2GHz

^{*} Fitted with Oven-Controlled Frequency Reference. Otherwise - 20ppm.

1.5V pk-pk - 0.1Hz to 100kHz. 1V pk-pk - 100kHz to 100MHz (sine-wave at 100MHz)

OPTIONS (continued)

FULL RANGE RESISTANCE					
Range	Accuracy ¹	Resolution	Max Rating		
1Ω – 20Ω	0.01% +/- 7mΩ	1Ω	0.1W		
20Ω – 99.999Ω	0.01% +/- 7mΩ	1mΩ /5mΩ*	0.1W		
$100\Omega - 999.999\Omega$	0.01% +/- 5mΩ	1mΩ	0.1W		
$1k\Omega - 9.999k\Omega$	0.02% +/- 20mΩ	1Ω	0.1W		
10kΩ – 99.999kΩ	0.01% +/- 1Ω	1Ω	0.1W		
100kΩ – 999.99kΩ	0.01% +/- 10Ω	10Ω	0.1W		
$1M\Omega - 9.9999M\Omega$	0.02% +/- 100Ω	100Ω	0.1W		
10ΜΩ – 120ΜΩ	0.1% +/- 1kΩ	1kΩ	0.1W		

^{1.} After subtraction of lead resistance. End resistance variation +/- 2.5mΩ

^{*} Output resolution is $5m\Omega$ below 50Ω

PRT SIMULATION (Uses Full Range Resistance option)			
Pt100 DIN	Alpha Coeff 0.003850	Range -180 to 850°C	Accuracy 0.1°C

It should be notes that the accuracy of the PRT simulation is determined by the accuracy of the PRT tables (BS EN 60751) published by the British Standards Institute. The 5025 uses precise digital interpretation of the tables to output resistance values that are within the accuracies specified in the table above.

SIMULATED RESISTANCE			
RANGE	ACCURACY		
2 Wire ¹			
40 ohms (min 10 ohms)	0.15% of setting +/- 20 milliohms		
400 ohms	0.05% of setting +/- 0.05% of range		
4K ohms	0.02% of setting +/- 0.05% of range		
40K ohms	0.02% of setting +/- 0.05% of range		
400K ohms	0.02% of setting +/- 0.05% of range		
4M ohms	0.05% of setting +/- 0.05% of range		
40M ohms	0.2% of setting +/- 0.05% of range		

^{1.} After subtraction of lead resistance.

Maximum measure current allowed in simulated resistance mode is 20mA. Simulated resistance mode is suitable for DC only, i.e. only DC current may be passed through the active resistance.

Simulated resistance limitations

It should be noted that the 5025's simulated resistance circuitry has a 2V voltage compliance. This means that the simulation is only valid if the measure current multiplied by required resistance is less than 2V. For example, if the measure current is 1mA, the maximum simulated resistance will be 2K ohms. The user should be aware of the measure currents being used by the instrument being calibrated in order to prevent incorrect simulated resistance being output by the 5025.

It should also be noted that some DMMs use measuring currents which are outside the 5025 simulated resistance limits. If in doubt over the validity of the 5025's output it is recommended that the voltage across the output terminals is checked – it should be less than 2V for correct operation.

PRT SIMULATION	N (Uses Simulated Resistance of	pption)	
Pt100 DIN	Alpha Coeff 0.003850	Range -180 to 850°C	Accuracy 0.1°C

It should be notes that the accuracy of the PRT simulation is determined by the accuracy of the 5025's simulated (active) resistance function and the accuracy of the PRT tables (BS EN 60751) published by the British Standards Institute. The 5025 uses precise digital interpretation of the tables to output resistance values that are within the accuracies specified in the table above.

POWER CAL	IBRATION						
DC Current	Accuracy	Compliance	Resolution	AC Current 45-400Hz	Accuracy	Compliance	Resolution
0.2 – 2.2A	0.03 + 500uA	5V	100uA	0.2 – 2.2A	0.1% + 2mA	3.5V	100uA
2.2 - 22A	0.05 + 6mA	4V	1mA	2.2 - 22A	0.1% + 20mA	3V	1mA
DC Voltage	Accuracy	Output Current	Resolution	AC Voltage 45-400Hz	Accuracy	Output Current	Resolution
1- 22V	0.01 + 500uV	20mA	100uV	1 - 22V	0.03% + 2mV	20mA	100uV
22 – 220V	0.02 + 30mV	20mA	1mV	22 – 220V	0.06% + 30mV	20mA	1mV
220 - 1050V	0.05 + 50mV	10mA	10mV	220 - 1050V	0.08% + 90mV	10mA	10mV
Phase	Accuracy	Range	Resolution	Power Factor		Range	Resolution
45 to 99Hz	0.3 deg	+/-90deg	0.1 deg	45 to 99Hz		0.00 - 1.00	0.001
100Hz to 400Hz	1.0 deg	+/-90deg	0.1 deg	100Hz to 400Hz		0.00 - 1.00	0.001

The accuracy of the power is complex and is determined by using a formula, which combines the errors due to Voltage, Current, and Phase. Power Acc (%) = SqrRt (Vacc^2 + Phase Correction^2)

The current and voltage terminals must be isolated. A current transformer or clamp meter adaptor must be used if instrument under test has a common negative.

Where Phase Correction (%) = 100x(1-Cos(Phase+PhaseAcc)/Cos Phase).

OPTIONS (continued)

High Accuracy DC Hi Voltage (DCHV+)				
Range	Accuracy 1 year	Output Resistance	Max Output Current	Resolution
220V*	15ppm + 1mV	<0.25Ω	10mA	100uV
1kV*	25ppm + 3mV	<1Ω	1mA	1mV
*Minimum Load 20kΩ				

GENERAL

POWER SUPPLY	
Mains Voltage	100 - 230V AC 50/60 Hz.
Fuse Ratings	3.15A anti-surge
Connector	IEC Plug
Power Consumption	120W typical, 200W Max.
MAXIMUM ALLOWABLE VOLTAGE	BETWEEN TERMINALS
Between V+ and V- terminals	< 1500V Peak
Between V- and Earth	< 75V Peak
Between Main, Aux and Earth	< 75 V
ENVIRONMENTAL	
Operating Temperature	15 - 35 °C, Full Spec: 22 °C +/- 3°C.
Storage Temperature	-10 °C to 50 °C
Humidity	Operating < 80%
Altitude	0 - 3km. Non Operating 3Km - 12km
Warm Up Time	1 hour to full accuracy
MECHANICAL	
Dimensions	Width 447mm, Height 152, Depth 470mm
Weight	16.5kg
	19" Rack Mounting Kit Available
REMOTE OPERATION	
Interfaces	GPIB, RS232 and optional USB
Command Set	Standard SCPI